NRT/KS/19/2949

Master of Science (M.Sc.) Semester–I (CBCS) (Computer Science) Examination DISCRETE MATHEMATICAL STRUCTURE

Paper-1

Paper-I

Time : 3 Hours]

[Maximum Marks: 80

8

8

N.B. :— (1) All questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (a) If A and B are finite sets then $|A \cup B| = |A| + |B| - |A \cap B|$. Define characteristic function and show that :

 $f_{A \cap B} = f_A f_B$ and $f_{A \cup B} = f_A + f_B - f_A f_B$

(b) Define Tautology and contradiction. Compute the truth table of $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p) = 8$

OR

(c) If a and b are two positive integers then prove that :

GCD
$$(a,b)$$
. LCM $(a,b) = a.b$ 8

		[1	0	0		[1	1	1]	-	[1	1	0]
(d)	Let A =	0	1	1,	B =	0	0	1	and $C =$	0	1	1
		1	0	0		1	0	1	and C =	0	0	1

Show that : $A \land (B \lor C) = (A \land B) \lor (A \land C)$

EITHER

2. (a) If R and S are relations from A to B then show that :

(i)
$$R \subseteq S \Rightarrow R^{-1} \subset S^{-1}$$

- (ii) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- (iii) $(\mathbf{R} \cup \mathbf{S})^{-1} = \mathbf{R}^{-1} \cup \mathbf{S}^{-1}$ 8
- (b) Find an explicit formula for the sequence defined by :

$$C_n = 3C_{n-1} - 2C_{n-2}$$

with initial conditions

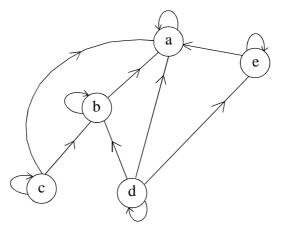
 $C_1 = 5$ and $C_2 = 3$.

OR

(c) Let $f : A \to B$ and $g : B \to C$ be invertible functions then prove that : $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 8

8

(d) Let A = {1, 2, 3, 4} and M_R = $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$


Construct the digraph of R and find the relation R on A.

EITHER

- 3. (a) Let $p(x, y, z) = (x \land y) \lor (y \land z')$. Construct the truth table and draw the logic diagram for p.
 - (b) Define Lattice. Prove that if L is a Bounded Distributive Lattice and if its complement exists, then it is unique.

OR

- (c) Define connected graph. Prove that, if G is a connected graph and every vertex has even degree then there is an Euler Circuit in G.
- (d) Determine the Hasse diagram and describe the ordered pairs in the relation. Also determine the matrix of partial order of the following digraph :

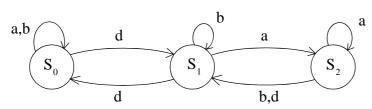
EITHER

- 4. (a) Let G be the set of all non zero real numbers and let $a * b = \frac{ab}{2}$. Show that (G *) is Abelian.
 - (b) Define semigroup. Let (S, *) and (T, *') be monoids with identities e and e', respectively. Let $f : s \to T$ be an isomorphism then f(e) = e'.

OR

(a) $(a^{-1})^{-1} = a$

- (c) Let G be a group and let a and b be elements of G. Then
 - (b) $(ab)^{-1} = b^{-1} a^{-1}$ 8


8

8

8

(d) Let $S = \{S_0, S_1, S_2\}$ and $I = \{a, b, d\}$. Consider the finite state machine M = (S, I, F) defined by digraph. Compute the functions f_{bad} , f_{add} , and f_{badadd} .

Show that
$$f_{add} \circ f_{bad} = f_{badadd}$$
 8

5.	(A)	What is the principle of Mathematical Induction ?	4
	(B)	What is an Equivalence Relation ?	4
	(C)	What is a Spanning Tree ? Explain Minimal Spanning Tree.	4
	(D)	What is a Finite State Machine ?	4